使用Stream接口,List转Map,List去重、(多字段)排序、交集、差集、并集
一、Stream简介
Java 8
是一个非常成功的版本,这个版本新增的Stream
,配合同版本出现的 Lambda
,给我们操作集合(Collection
)提供了极大的便利。
那到底什么是Stream呢?
Stream将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。
Stream可以由数组或集合创建,对流的操作主要分为两种:
- 中间操作,每次返回一个新的流,可以有多个。
- 终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值。
另外,Stream有几个特性:
- Stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。
- Stream不会改变数据源,通常情况下会产生一个新的集合或一个值。
- Stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。
二、Stream的创建
Stream 可以通过集合、数组创建
2.1 通过java.util.Collection.stream()
方法用集合创建流
List<String> list = Arrays.asList("a", "b", "c"); // 创建一个顺序流 Stream<String> stream = list.stream(); // 创建一个并行流 Stream<String> parallelStream = list.parallelStream();
2.2 使用java.util.Arrays.stream(T[] array)
方法用数组创建流
int[] array={1,3,5,6,8}; IntStream stream = Arrays.stream(array);
2.3 使用Stream
的静态方法:of()、iterate()、generate()
Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6); Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4); stream2.forEach(System.out::println); Stream<Double> stream3 = Stream.generate(Math::random).limit(3); stream3.forEach(System.out::println);
输出结果:
0 3 6 9 0.6796156909271994 0.1914314208854283 0.8116932592396652
stream
和parallelStream
的简单区分: stream
是顺序流,由主线程按顺序对流执行操作,而parallelStream
是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:
如果流中的数据量足够大,并行流可以加快处速度。
除了直接创建并行流,还可以通过parallel()
把顺序流转换成并行流:
Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();
三、Stream的使用
在使用Stream
之前,先理解一个概念:Optional
:
从
Java 8
引入的一个很有趣的特性是Optional
类。Optional
类主要解决的问题是臭名昭著的空指针异常(NullPointerException
)。
Optional
类是一个可以为null
的容器对象。如果值存在则isPresent()
方法会返回true
,调用get()
方法会返回该对象。
接下来,大批代码向你袭来!我将用20个案例将Stream的使用整得明明白白,只要跟着敲一遍代码,就能很好地掌握。
案例使用的员工类
这是后面案例中使用的员工类:
List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, "male", "New York")); personList.add(new Person("Jack", 7000, "male", "Washington")); personList.add(new Person("Lily", 7800, "female", "Washington")); personList.add(new Person("Anni", 8200, "female", "New York")); personList.add(new Person("Owen", 9500, "male", "New York")); personList.add(new Person("Alisa", 7900, "female", "New York")); class Person { private String name; // 姓名 private int salary; // 薪资 private int age; // 年龄 private String sex; //性别 private String area; // 地区 // 构造方法 public Person(String name, int salary, int age,String sex,String area) { this.name = name; this.salary = salary; this.age = age; this.sex = sex; this.area = area; } // 省略了get和set,请自行添加 }
3.1 遍历/匹配(forEach/find/match)
Stream
也是支持类似集合的遍历和匹配元素的,只是Stream
中的元素是以Optional
类型存在的。Stream
的遍历、匹配非常简单。
// import已省略,请自行添加,后面代码亦是 public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1); // 遍历输出符合条件的元素 list.stream().filter(x -> x > 6).forEach(System.out::println); // 匹配第一个 Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst(); // 匹配任意(适用于并行流) Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny(); // 是否包含符合特定条件的元素 boolean anyMatch = list.stream().anyMatch(x -> x > 6); System.out.println("匹配第一个值:" + findFirst.get()); System.out.println("匹配任意一个值:" + findAny.get()); System.out.println("是否存在大于6的值:" + anyMatch); } }
3.2 筛选(filter)
筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。
案例一:筛选出Integer
集合中大于7
的元素,并打印出来
public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9); Stream<Integer> stream = list.stream(); stream.filter(x -> x > 7).forEach(System.out::println); } }
预期结果:
8 9
案例二: 筛选员工中工资高于8000
的人,并形成新的集合。 形成新集合依赖collect
(收集)
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName) .collect(Collectors.toList()); System.out.print("高于8000的员工姓名:" + fiterList); } }
运行结果:
高于8000的员工姓名:[Tom, Anni, Owen]
3.3 聚合(max/min/count)
max、min、count
这些字眼你一定不陌生,没错,在mysql
中我们常用它们进行数据统计。Java stream
中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。
案例一:获取String
集合中最长的元素
public class StreamTest { public static void main(String[] args) { List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd"); Optional<String> max = list.stream().max(Comparator.comparing(String::length)); System.out.println("最长的字符串:" + max.get()); } }
输出结果:
最长的字符串:weoujgsd
案例二:获取Integer
集合中的最大值
public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6); // 自然排序 Optional<Integer> max = list.stream().max(Integer::compareTo); // 自定义排序 Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o1.compareTo(o2); } }); System.out.println("自然排序的最大值:" + max.get()); System.out.println("自定义排序的最大值:" + max2.get()); } }
输出结果:
自然排序的最大值:11 自定义排序的最大值:11
案例三:获取员工工资最高的人
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary)); System.out.println("员工工资最大值:" + max.get().getSalary()); } }
输出结果:
员工工资最大值:9500
案例四:计算Integer
集合中大于6
的元素的个数
import java.util.Arrays; import java.util.List; public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9); long count = list.stream().filter(x -> x > 6).count(); System.out.println("list中大于6的元素个数:" + count); } }
输出结果:
list中大于6的元素个数:4
3.4 映射(map/flatMap)
映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map
和flatMap
:
- map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
- flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
案例一:英文字符串数组的元素全部改为大写,整数数组每个元素+3
public class StreamTest { public static void main(String[] args) { String[] strArr = { "abcd", "bcdd", "defde", "fTr" }; List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList()); List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11); List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList()); System.out.println("每个元素大写:" + strList); System.out.println("每个元素+3:" + intListNew); } }
输出结果:
每个元素大写:[ABCD, BCDD, DEFDE, FTR] 每个元素+3:[4, 6, 8, 10, 12, 14]
案例二:将员工的薪资全部增加1000
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); // 不改变原来员工集合的方式 List<Person> personListNew = personList.stream().map(person -> { Person personNew = new Person(person.getName(), 0, 0, null, null); personNew.setSalary(person.getSalary() + 10000); return personNew; }).collect(Collectors.toList()); System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary()); System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary()); // 改变原来员工集合的方式 List<Person> personListNew2 = personList.stream().map(person -> { person.setSalary(person.getSalary() + 10000); return person; }).collect(Collectors.toList()); System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary()); System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary()); } }
输出结果:
一次改动前:Tom–>8900 一次改动后:Tom–>18900 二次改动前:Tom–>18900 二次改动后:Tom–>18900
案例三:将两个字符数组合并成一个新的字符数组
public class StreamTest { public static void main(String[] args) { List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7"); List<String> listNew = list.stream().flatMap(s -> { // 将每个元素转换成一个stream String[] split = s.split(","); Stream<String> s2 = Arrays.stream(split); return s2; }).collect(Collectors.toList()); System.out.println("处理前的集合:" + list); System.out.println("处理后的集合:" + listNew); } }
输出结果:
处理前的集合:[m-k-l-a, 1-3-5] 处理后的集合:[m, k, l, a, 1, 3, 5]
3.5 归约(reduce)
归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
案例一:求Integer
集合的元素之和、乘积和最大值
public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4); // 求和方式1 Optional<Integer> sum = list.stream().reduce((x, y) -> x + y); // 求和方式2 Optional<Integer> sum2 = list.stream().reduce(Integer::sum); // 求和方式3 Integer sum3 = list.stream().reduce(0, Integer::sum); // 求乘积 Optional<Integer> product = list.stream().reduce((x, y) -> x * y); // 求最大值方式1 Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y); // 求最大值写法2 Integer max2 = list.stream().reduce(1, Integer::max); System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3); System.out.println("list求积:" + product.get()); System.out.println("list求和:" + max.get() + "," + max2); } }
输出结果:
list求和:29,29,29 list求积:2112 list求和:11,11
案例二:求所有员工的工资之和和最高工资
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); // 求工资之和方式1: Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum); // 求工资之和方式2: Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), (sum1, sum2) -> sum1 + sum2); // 求工资之和方式3: Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum); // 求最高工资方式1: Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), Integer::max); // 求最高工资方式2: Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), (max1, max2) -> max1 > max2 ? max1 : max2); System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3); System.out.println("最高工资:" + maxSalary + "," + maxSalary2); } }
输出结果:
工资之和:49300,49300,49300 最高工资:9500,9500
3.6 收集(collect)
collect
,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。
collect
主要依赖java.util.stream.Collectors
类内置的静态方法。
3.6.1 归集(toList/toSet/toMap)
因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList
、toSet
和toMap
比较常用,另外还有toCollection
、toConcurrentMap
等复杂一些的用法。
下面用一个案例演示toList
、toSet
和toMap
:
public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20); List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList()); Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet()); List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000) .collect(Collectors.toMap(Person::getName, p -> p)); System.out.println("toList:" + listNew); System.out.println("toSet:" + set); System.out.println("toMap:" + map); } }
运行结果:
toList:[6, 4, 6, 6, 20] toSet:[4, 20, 6] toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}
3.6.2 统计(count/averaging)
Collectors提供了一系列用于数据统计的静态方法:
- 计数:
count
- 平均值:
averagingInt
、averagingLong
、averagingDouble
- 最值:
maxBy
、minBy
- 求和:
summingInt
、summingLong
、summingDouble
- 统计以上所有:
summarizingInt
、summarizingLong
、summarizingDouble
案例:统计员工人数、平均工资、工资总额、最高工资
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); // 求总数 Long count = personList.stream().collect(Collectors.counting()); // 求平均工资 Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary)); // 求最高工资 Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare)); // 求工资之和 Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary)); // 一次性统计所有信息 DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary)); System.out.println("员工总数:" + count); System.out.println("员工平均工资:" + average); System.out.println("员工工资总和:" + sum); System.out.println("员工工资所有统计:" + collect); } }
运行结果:
员工总数:3 员工平均工资:7900.0 员工工资总和:23700 员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}
3.6.3 分组(partitioningBy/groupingBy)
- 分区:将
stream
按条件分为两个Map
,比如员工按薪资是否高于8000
分为两部分。- 分组:将集合分为多个
Map
,比如员工按性别分组。有单级分组和多级分组。
案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, "male", "New York")); personList.add(new Person("Jack", 7000, "male", "Washington")); personList.add(new Person("Lily", 7800, "female", "Washington")); personList.add(new Person("Anni", 8200, "female", "New York")); personList.add(new Person("Owen", 9500, "male", "New York")); personList.add(new Person("Alisa", 7900, "female", "New York")); // 将员工按薪资是否高于8000分组 Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000)); // 将员工按性别分组 Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex)); // 将员工先按性别分组,再按地区分组 Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea))); System.out.println("员工按薪资是否大于8000分组情况:" + part); System.out.println("员工按性别分组情况:" + group); System.out.println("员工按性别、地区:" + group2); } }
输出结果:
员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]} 员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]} 员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}
3.6.4 接合(joining)
joining
可以将stream
中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(",")); System.out.println("所有员工的姓名:" + names); List<String> list = Arrays.asList("A", "B", "C"); String string = list.stream().collect(Collectors.joining("-")); System.out.println("拼接后的字符串:" + string); } }
运行结果:
所有员工的姓名:Tom,Jack,Lily 拼接后的字符串:A-B-C
3.6.5 归约(reducing)
Collectors
类提供的reducing
方法,相比于stream
本身的reduce
方法,增加了对自定义归约的支持。
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); // 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子) Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000))); System.out.println("员工扣税薪资总和:" + sum); // stream的reduce Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum); System.out.println("员工薪资总和:" + sum2.get()); } }
运行结果:
员工扣税薪资总和:8700 员工薪资总和:23700
3.7 排序(sorted)
sorted
,中间操作。有两种排序:
sorted()
:自然排序,流中元素需实现Comparable
接口sorted(Comparator com)
:Comparator
排序器自定义排序
案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Sherry", 9000, 24, "female", "New York")); personList.add(new Person("Tom", 8900, 22, "male", "Washington")); personList.add(new Person("Jack", 9000, 25, "male", "Washington")); personList.add(new Person("Lily", 8800, 26, "male", "New York")); personList.add(new Person("Alisa", 9000, 26, "female", "New York")); // 按工资升序排序(自然排序) List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName) .collect(Collectors.toList()); // 按工资倒序排序 List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed()) .map(Person::getName).collect(Collectors.toList()); // 先按工资再按年龄升序排序 List<String> newList3 = personList.stream() .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName) .collect(Collectors.toList()); // 先按工资再按年龄自定义排序(降序) List<String> newList4 = personList.stream().sorted((p1, p2) -> { if (p1.getSalary() == p2.getSalary()) { return p2.getAge() - p1.getAge(); } else { return p2.getSalary() - p1.getSalary(); } }).map(Person::getName).collect(Collectors.toList()); System.out.println("按工资升序排序:" + newList); System.out.println("按工资降序排序:" + newList2); System.out.println("先按工资再按年龄升序排序:" + newList3); System.out.println("先按工资再按年龄自定义降序排序:" + newList4); } }
运行结果:
按工资升序排序:[Lily, Tom, Sherry, Jack, Alisa] 按工资降序排序:[Sherry, Jack, Alisa, Tom, Lily] 先按工资再按年龄升序排序:[Lily, Tom, Sherry, Jack, Alisa] 先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]
3.8 提取/组合(distinct/skip/limit)
流也可以进行合并、去重、限制、跳过等操作。
public class StreamTest { public static void main(String[] args) { String[] arr1 = { "a", "b", "c", "d" }; String[] arr2 = { "d", "e", "f", "g" }; Stream<String> stream1 = Stream.of(arr1); Stream<String> stream2 = Stream.of(arr2); // concat:合并两个流 distinct:去重 List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList()); // limit:限制从流中获得前n个数据 List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList()); // skip:跳过前n个数据 List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList()); System.out.println("流合并:" + newList); System.out.println("limit:" + collect); System.out.println("skip:" + collect2); } }
运行结果:
流合并:[a, b, c, d, e, f, g] limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19] skip:[3, 5, 7, 9, 11]
四、Stream巩固练习题
4.1 创建测试实体
交易员实体代码如下:
//交易员 public class Trader { private String name; private String city; public Trader() { } public Trader(String name, String city) { this.name = name; this.city = city; } @Override public String toString() { return "Trader [name=" + name + ", city=" + city + "]"; } //省略对应的get set方法 }
交易记录实体代码如下所示:
//交易 public class Transaction { //交易员 private Trader trader; //交易日期 private int year; //交易金额 private int value; public Transaction() { } public Transaction(Trader trader, int year, int value) { this.trader = trader; this.year = year; this.value = value; } @Override public String toString() { return "Transaction [trader=" + trader + ", year=" + year + ", value=" + value + "]"; } //省略对应的get set方法 }
4.2 测试代码
再来测试代码,代码中使用到了过滤,排序,归约,分组,求平均值,最大值,最小值,最小值对应记录等等,而且有的实现提供了多种方式。
/** * Stream API练习 */ public class StreamPractice { List<Transaction> transactions = null; @Before public void before(){ Trader raoul = new Trader("Raoul", "Cambridge"); Trader mario = new Trader("Mario", "Milan"); Trader alan = new Trader("Alan", "Cambridge"); Trader brian = new Trader("Brian", "Cambridge"); transactions = Arrays.asList( new Transaction(brian, 2011, 300), new Transaction(raoul, 2012, 1000), new Transaction(raoul, 2011, 400), new Transaction(mario, 2012, 710), new Transaction(mario, 2012, 700), new Transaction(alan, 2012, 950) ); } List<Cust> custs = Arrays.asList( new Cust(101,"梅西",30,33000000L), new Cust(102,"伊布",35,23000000L), new Cust(103,"哈维",34,20000000L), new Cust(104,"伊列斯塔",33,18000000L), new Cust(105,"小罗",37,15000000L), new Cust(106,"内马尔",27,32000000L), new Cust(106,"内马尔",27,32000000L), new Cust(106,"姆巴佩",23,30500000L) ); @Test public void test0() { /* * 给定一个数字列表,返回每个数字平反的列表 */ List<Integer> l1 = Arrays.asList(1,2,3,4).stream().map(x->x*x).collect(Collectors.toList()); System.out.println(l1); System.out.println("##########################"); /* * 用Map和Reduce计算流中有多少个Cust对象 * 当然你可以有很多种方法都可以统计列表中对象的个数,只是为了更进一步了解Stream API的用法,才要求这样做 */ Integer ic1 = custs.stream().map(Cust::getAge).reduce(0, (x,y)->x+1); System.out.println(ic1); Integer ic2 = custs.stream().map(e -> 1).reduce(0, Integer::sum); System.out.println(ic2); } //1. 找出2011年发生的所有交易, 并按交易额排序(从低到高) @Test public void test1() { transactions.stream().filter(x->x.getYear()==2011).sorted((x,y)->{ if(x.getValue()>y.getValue()) { return 1; }else if(x.getValue()<y.getValue()) { return -1; }else { return 0; } }).forEach(System.out::println); } //2. 交易员都在哪些不同的城市工作过? @Test public void test2() { //实际上就是找出所有交易员工作的城市并排重 //方式1 transactions.stream().map(Transaction::getTrader).map(Trader::getCity).distinct().forEach(System.out::println); //方式2 transactions.stream().map(x->x.getTrader().getCity()).distinct().forEach(System.out::println); } //3. 查找所有来自剑桥的交易员,并按姓名排序 @Test public void test3() { transactions.stream().filter(x->x.getTrader().getCity().equals("Cambridge")).sorted((x,y)->{ return x.getTrader().getName().compareTo(y.getTrader().getName()); }).forEach(System.out::println); } //4. 返回所有交易员的姓名字符串,按字母顺序排序 @Test public void test4() { //方式1 String s = transactions.stream().map(x->x.getTrader().getName()).distinct().sorted().collect(Collectors.joining(",")); System.out.println(s); //方式2 String s1 = transactions.stream().map(x->x.getTrader().getName()).distinct().sorted().reduce("", (x,y)->x+","+y).replaceFirst(",", ""); System.out.println(s1); } //5. 有没有交易员是在米兰工作的? @Test public void test5() { Boolean b = transactions.stream().anyMatch(x->x.getTrader().getCity().equals("Milan")); System.out.println(b); } //6. 打印生活在剑桥的交易员的所有交易额 @Test public void test6() { //方式1 Map<Object, List<Transaction>> mt = transactions.stream().filter(x->x.getTrader().getCity().equals("Cambridge")) .collect(Collectors.groupingBy(x->x.getTrader().getName())); //System.out.println(mt); for(Object obj:mt.keySet()) { Integer i = mt.get(obj.toString()).stream().collect(Collectors.summingInt(x->x.getValue())); System.out.println(obj+":"+i); } //方式2 Map<Object,Integer> mt1 = transactions.stream().filter(x->x.getTrader().getCity().equals("Cambridge")) .collect(Collectors.groupingBy(x->x.getTrader().getName(), Collectors.summingInt(x->x.getValue()))); System.out.println(mt1); //很明显流提供的支持确实很强大,第二种方式要简单好多好多 } //7. 所有交易中,最高的交易额是多少 @Test public void test7() { Optional<Integer> i = transactions.stream().map(Transaction::getValue).collect(Collectors.maxBy(Integer::compare)); System.out.println(i.get()); } //8. 找到交易额最小的交易 @Test public void test8() { Optional<Transaction> op = transactions.stream().min((x,y)->Integer.compare(x.getValue(), y.getValue())); System.out.println(op.get()); } }
摘自:https://blog.csdn.net/weixin_42039228/article/details/123734269